JJJJJJJJJ

PAIR PROGRAMMING WITH A

ARTIFIGIAL INTELLIGENGE

EEEREEE

ﬁr_.-rrrrr

4

44444

A4 LLLLLL

NEURAL NET-BASED ARTIFICIAL INTELLIGENCE

ARTIFIGIAL INTELLIGENGE

“Ever){ aspect of learning or any other feature
of intelligence can he so precisely aescrihed
that a machine can be made to simufate it.

HERE'S Al TODAY

Create code examples for this presentation

Certainly! Here are some code examples that could be used in the presentation to

demonstrate the usage of Al tools for writing code.

ruby Copy code

Without AL Tool
Traditional way of writing code without AL assistance

def calculate area(radius)
return radius * radius

end

With AL Tool
Al-powered code completion suggestion

def calculate area(radius)

returnjMath: :PI§* radius * radius

end

Write a joke to open the presentation with

@ Sure! Here's a light-hearted joke to open the presentation with:

"Why did the programmer use an Al tool to write code? Because it helps to avoid those pesky

'‘Bug-zillas' and}'Code-pocalypses'

This joke adds a touch of humor to the presentation, setting a positive and engaging tone for

the audience before diving into the topic of using Al tools for writing code.

“HI THERE!

-JOSH PUETZ
SOFTWARE ENGINEER @ DONUT

donut, Kitty, Omer

donut 10:00 A

J Hi @Kitty, @0mer,

You've been matched to meet for #coffee-chats!

=, Here are some times you're all free based on your calendars:

donut, Kitty, Omer Friday, June 22nd 10:30 AM-11:00AM | Send calendar invite
Tuesday, June 26th 12:00 PM-12:30 PM Send calendar invite
Wednesday, June 27th 3:00 PM-3:30 PM | Send calendar invite

USING A TOOLS TO WRITE GODE

BITHUB GOPILOT
GHATGPT

ETHIGAL AND LEGAL GONGERNS

WHO IS THE TALK FOR?

WHY SHOULD YOU GARE?

ThIS TIME IS DIFFERENT.
NO, REALLY.

“I've heen reluctant to try GhatGPT. Today | got over
that reluctance. Now | understand why | was
reluctant.

The value of 90% of my skills just dropped to $0. The
leverage for the remaining 10% went up 1000x. |
need to recalibrate.”

KKKKKKKKK

FIRST, SOME BAGKGROUNID

B Electron

HYDROGENATOM

Hydrogen Probability Density

3.2.0 321 Series:n=1to4
3,2,2 All 1 and +m combinations

| nm

Labels: n, L. m

Density is scaled
to the maximmum
value in cach
distnbution.

SO WHAT?”

LARGE LANGUAGE
MODEL

TOKENS

={cat}
={dog]}
={awake)
={asleep)

={the entire sum of human writing}

RELATIONSHIPS BETWEEN TOKENS

={cat}

= QObjects: {cat} -> {dog}

=Language: {cat} -> (katze}

=Concepts: {cat is awake} ->{cat Is sleeping}

= More complicated concepts:
{cat Is iImmature} -> {cat is mature}

Text output

Text input

Language

Model

Numeric representation of
text useful for other systesms

LARGE LANGUAGE MODEL

GENERATIVE PRE:
TRAINED TRANSFORMER

‘A generative model is a function that can
take a structured collection of symbols as
input and produce a related structured
collection of symbols as output.

GHATGPT = GPT + GHAT U1+ RANDOMNESS

ﬂ | just got a new dog!

Congratulations on your new furry friend! Woof woof!

ﬂ What's a good name for him?

GRATGPT GONVERSATIONS

EXGRANGES WITH GHATGPT

={me: | just got a new dog!}

={me: | just got a new dog!
ChatGPT: Congratulations on your new furry friend!
Woof woof!
me: What should | name him?}

Buddy, Max, or Charlie could be great options! Woof!

LETS WRITE
SOME GODE!

GHATGPT

Tell me how ChatGPT works.

ChatGPT is a large language model that uses deep learning techniques to generate
human-like text. It is based on the GPT (Generative Pre-trained Transformer) architecture,

which uses a transformer neural network to process and generate text. The model is pre-

trained on a massive dataset of text, such as books, articles, and websites, so it can

understand the patterns and structure of natural language. When given a prompt or a
starting point, the model uses this pre-trained knowledge to generate text that continues

the given input in a coherent and natural way.

WHAT'S IT GOOD FOR?

=Planning

=Code Generation
= Code Explanation

WRITING GODE

Write a ruby method that loops over an array of strings and returns the longest one

Sure! Here's a Ruby method that takes an array of strings as input, loops over each string,

and returns the longest one:

ruby] Copy code

def find_longest_string(arr)
longest_string = '
arr.each do |str|
1f str.length > longest_string.length
longest_string = str
end
end
return longest_string

end

CREATING A METHOD

Write a rails class the represents a blog post

Sure! Here's an example of a Ruby on Rails class that represents a blog post:

ruby 7] Copycode

class BlogPost < ApplicationRecord
validates :title, presence: true

validates :content, presence: true

Associlations
belongs_to :author, class_name: 'User'

has_many :comments

Instance methods
def word count
content.split(' ').length

end

def formatted_published_at
published_at.strftime('%B %d, %Y')
end

end

CREATING A CLASS

This class *BlogPost " is defined as a subclass of *ApplicationRecoxd’, which is the base
class for ActiveRecord models in Ruby on Rails. It represents a blog post with a “title" and

“content ", and has validations to ensure that both “title" and “content" are present.

The class also defines associations using ActiveRecord's association methods. It has a
"belongs_to" association with a “Usexr* model, representing the author of the blog post,
and a “has_many " association with a “Comment ™ model, representing comments on the blog

post.

The class also defines two instance methods: *word count ' and

“formatted _published _at’. ‘word_count' calculates the word count of the *content" of
the blog post by splitting the content string at spaces and counting the resulting array's
length. “formatted_published_at" formats the “published_at" attribute, assumingit's a

‘DateTime" or “Time' object, into a string with the format "Month Day, Year" (e.g., "April 21,
2023").

EXPLAINING CODE

EXPLAINING GODE

Explain the following code:

def fizz_buzz(n)
(1..n).map do [num|
fizz=(num % 3 ==0)
buzz = (num % 5 == 0)
if fizz && buzz
"FizzBuzz"
elsif fizz
"Fizz"
elsif buzz
"Buzz"
else
num
end
end
end

The code you provided is a Ruby method called “£fizz_buzz" that takes an integer *n" as
input. It generates a sequence of numbers from1to “n*, and for each number in the
sequence, it applies the rules of the "FizzBuzz" game and generates a corresponding output.
The method returns an array of these outputs.

Here's how the code works, step by step:

It uses the “map ™ method to iterate over a range of numbers from 1to “n" (inclusive),
represented by *(1..n) . For each number in the range, it executes the code block
enclosed inthe “do"..."end" statement.
Inside the code block, the variable “num* represents the current number being
processed.
It initializes two boolean variables “£fizz" and “buzz' to “true" if “num" is divisible by 3
and 5, respectively, and “false " otherwise. This is done using the modulo operator “%",
which returns the remainder when “num" is divided by a given number. For example, “num
% 3 == 0" willbe “txue" if "num’ is divisible by 3 without a remainder.
It uses a series of conditional statements ("if", “elsif", and “else ") to determine the
appropriate output for the current number based on the "FizzBuzz" rules:

* If “£izz" and "buzz" are both “txue’, it returns the string "FizzBuzz".

* Ifonly “fizz" is “txue’, it returns the string "Fizz".

* Ifonly “buzz' is “txue’, it returns the string "Buzz".

* If neither “£izz" nor “buzz" is “true’, it returns the original number “num".
The “map* method collects the outputs of each iteration and returns them as an array.
Finally, the method returns the array of outputs, which represents the "FizzBuzz"

sequence for the numbers from 1to “n" according to the rules specified in the code.

Explain it in 100 words or less

The code is a Ruby method called "“fizz_buzz" that plays a game where you count from 1to
a certain number (*n*). For each number, you check if it's divisible by 3 and/or 5. If it is, you

say "Fizz" and/or "Buzz" accordingly. If it's divisible by both 3 and 5, you say "FizzBuzz". If it's

not divisible by either, you just say the number itself. The method collects all the things you
said for each number into a list (an array) and returns it, representing the "FizzBuzz"
sequence for the numbers from1to *n" according to the rules in the code.

REFAGTOING GODE

Rewrite the FizzBuzz method in a single line.

Sure! Here's the FizzBuzz method written in a single line using a ternary conditional

expression in Ruby:

] Copycode

def fizz_buzz(n)
(L..n).map { |num| (num % 3 == 0 & & num % 5 == 0) ? "FizzBuzz"

end

Note: While this code is concise it may be harder to read and understand ompared to the
original version with explicit if-else statements. It's important to balance between

conciseness and readability when writing code.

REWRITING FlZZBUZ2Z

K. Rewrite the FizzBuzz method in a single line with a line break

R

ACe)H]
) 4
E‘Fﬁe.ﬁ.«é?_ﬁ

Sure! Here's the FizzBuzz method written in a single line with a line break for improved

readability:

] Copy code

f1izz _buzz(n)
.map { |num|
% 3=08&&& num % 5 == 0) ? "FizzBuzz"
% 3 ==0) ? "Fizz"

% 5 == 0) ? "Buzz"

This version maintains the concise single-line format while adding line breaks to separate
the different conditions for better readability. It's important to strike a balance between

conciseness and readability in your code to make it easier to understand and maintain.

REWRITING FlZZBUZ2Z

iR

4

Genericize the fizzbuzz method so that we can use numbers other than 3 and 5 and strings
other than “fizz” and “buzz"

Sure! Here's a generic version of the FizzBuzz method that allows for any two numbers and

corresponding strings to be used as the Fizz and Buzz factors:

ruby] Copy code

def custom_f£fizz_buzz(n,jfizz_factor, buzz_factor, fizz_str, buzz_str)
(1..n).map do |num]|
fizz = (num % fizz_factor
buzz = (num % buzz_factor
1if fizz && buzz
fizz str + buzz_str
elsif fizz
fizz _str
elsif buzz
buzz_str
else
num
end
end

end

REFACTORING FIZZBUZZ

WRITING TESTS

Write an rspec test for the FizzBuzz method with line breaks for readability

Certainly! Here's an example of an RSpec test for the FizzBuzz method with line breaks for

Improved readability:

ruby (] Copy code

require 'rspec’

require_relative 'fizz_buzz' # Assuming 'fizz_buzz.rb' is the name of the fi

RSpec.describe 'fizz_buzz' do
it 'returns correct FizzBuzz sequence for numbers from 1 to n' do
expect(fizz_buzz(5)).to eq([1l, 2, 'Fizz', 4, 'Buzz'])
expect(fizz_buzz(15)).to eq([
X, &, “CLZZ', %, BUzz', “"prizz’, T, B, "FlZZ’,
‘Buzz” , ‘11, "Fizz', 13, 14, ‘F1zZZBUZZ'
1)
expect(fizz_buzz(20)).to eq([
X, &, “EizZz', &, ‘BUzZ', “EFLzEzr, T, 8%, "F1ZZ’,
'‘Buzz’', 11, 'Fizz’', 13, 14, 'FizzBuzz', 16, 17,

‘Fazz" , ‘19, "Buzz'

WRITING A TEST FOR FiZZBUZZ

PLANNING

. Using the tech stack Ruby on Rails, create a plan for a web page that prompts a user for their

name and stores that information in a database Don’t write any code yet.

Sure! Here's a high-level plan for a web page using Ruby on Rails that prompts a user for

their name and stores that information in a database:

. Set up a new Ruby on Rails application with a database for storing user data. This can be

done using the Rails command line tool.

Create a model for the user data, which defines the attributes (e.g., name, email, etc.) and

validations (e.g., presence, length, etc.) for the data to be stored in the database.

Run a database migration to create the corresponding database table for the User model.

Create a view for the web page that prompts the user for their name. This can be done

using HTML, ERB (Embedded Ruby), or any other view template engine supported by

Rails. The view should contain a form with an input field for the user to enter their name,

and a submit button to submit the form.

Create a controller that handles the form submission and stores the user's name in the

database. This controller should have actions for rendering the form view and handling

the form submission. 6. Update the form in the view to submit the data to the appropriate action in the controller
when the form is submitted.
Implement the action in the controller to handle the form submission. This action should
validate the submitted data, create a new User object with the submitted name, and save
it to the database.
Add routes in the Rails application to map the URL path to the appropriate controller
action.
Test the web page and form to ensure that it properly prompts the user for their name,
submits the form data to the server, and stores the user's name in the database. This can
be done using Rails built-in testing framework, such as Rails MiniTest or RSpec, to write
and run tests for the controller, model, and view.

Rewrite the plan with class and method names

Sure! Here's a revised plan for a web page in Ruby on Rails that prompts a user for their

name and stores that information in a database, with suggested class and method names:

Create a Rails application with the “rails new' command, and generate a User model
with attributes for storing user data, such as name, email, etc. (*rails generate model
User name:string email:string’).

Run a migration with “rails db:migrate" to create the userstable in the database.
Create a UsersController with actions for rendering the form view (*new ") and handling
the form submission (*create).

Create a view for the “new" action that contains a form with an input field for the user to
enter their name and a submit button to submit the form.

Create a “create " action in the UsersController that validates the submitted data,
creates a new User object with the submitted name, and saves it to the database.
Update the form in the view to submit the data to the “create " action in the
UsersController when the form is submitted.

Add aroute in “routes.xb" to map the URL path for the form submission to the “create"
action in the UsersController ("post 'users' => 'users#create'").

Test the form submission and database storage using Rails built-in testing framework,
such as Rails MiniTest or RSpec, to ensure that the user's name is properly stored in the
database when the form is submitted.

K. Write the code for this plan

URE]

WRITING CODE FROM THE PLAN

| | Sure! Here's an example implementation of the plan with class and method names:

1. Generate a User model:

ruby [®) Copycode

rails generate model User name:string el

2. Runthe migration to create the users table:

ruby ©) Copycode

rails db:migrate

Create a UsersController:

ruby

rails generate controller Users new create

4. Definethe “new" and “create " actions in the UsersController:

() Copycode

redirect_to root_path, 'User successfully created!'
else

render
end

end

private

def user_params

params.require(:user).permit(:name, :email)

end

end

5. Create aview for the “new" action in “app/views/users/new.html.exb":

erb () Copycode

<h1>New User</h1>
<%= form_with(model: @user, url: users_path, local: true) do |form| %>
<%= form.label :name %>
<%= form.text_field :name %>
<%= form.label :email %>
<%= form.text_field :email %>
<%= form.submit "Create User" %>
<% end %>

6. Update the form in the view to submit the data to the “create" action in the

UsersController when the form is submitted.

Add aroute in “config/routes.rb:

ruby) Copycode

post 'users' => 'users#create'

Sure! Here's an example of how you could write an integration test using RSpec and

Capybara to test the user flow for the plan outlined above:

ruby (] Copycode

spec/features/user_registration_spec.rb

require 'rails_helper'

iSpec.feature "User Registration", type:
scenario "User enters valid information
visit new_user_path
£ill_in "user_name", with: "John Doe"
- ’
fill_in "user_email", with: "johndoe@example.com"

click_button "Register"

expect(page).to have_content("User successfully created!")
expect(page).to have_current_path(root_path)

end

scenario "User enters invalid information and sees error messages" do

visit new_user_path
fill_in "user_name", with: ""
fill_in "user_email", with: "johndoe@example.com"

click_button "Register"
expect(page).to have_content("Name can't be blank"

expect(page).to have_current_path(users_path)
end

WRITING CODE FROM THE PLAN

Create a spec file for the UsersController:

ruby

spec/controllers/users_controller_spec.rb

require 'rails_helper’

pec.describe Us
describe "GET #new" do
it "renders the new template" do

get :new

expect(response).to render_template(:new)

end

it "assigns a new User instance variable" do
get :new
expect(assigns(:user)).to be_a_new(User)
end

end

describe "POST #create" do
context "with valid params" do
let(:user_params) { { user: { name: "John Doe",

it "creates a new User record" do
expect {
post :create, params: user_params
}.to change(User, :count).by(l)

end

"jJohndoe@examp]

LIMITATIONS

=|ncorrect code

=Unoptimized Code

=EXpense

=Lack of context with your codebase
=Randomness

Visual Studio Neovim VS Code JetBrains IDEs

4y addresses.rb

WHAT'S IT GOOD FOR?

=Code completion
=Code generation

=Keeping context as you write code

WRITING GODE

class User < ActiveRecord: :Base
has_many :posts
has_many :comments
has_many :posts, through: :comments

def validate_name_1is_not_empty()
if name.empty?
errors.add(:name, "l;g~'
return false
end
end
end

1
2
3
4
S
b
7/
8
9

- = = =
W N —~,

LINE COMPLETION

class User < ActiveRecord: :Base
has_many :posts
has_many :comments
has_many :posts, through: :comments

def validate_posts_are_not_empty()
Lf posts.empty?

1
2
3
4
>
b
7/
8
9

LINE COMPLETION

class User < ActiveRecord: :Base
has_many :posts
has_many :comments
has_many :posts, through: :comments

def validate_ name

METHOD COMPLETION

post.rb

A BUNCH OF CLASSES

WRITING TESTS

user.rb
class User
attr_accessor :name, :ematl

def initialize(attributes = {})
@name = attributes|[:name]
@ematil = attributes[:email]
end

O 00O OO U & W IN -

def formatted ematil
"#{name} <#{emaill}>"
end
end

e
N P, ©

describe User do
before(:each) do
@ttr = { :name => "Example User", :email => "example@testing.com" }
end

1t "should create a new instance given valid attributes” dd

A TEST METHOD

user.rb
class User
attr_accessor :name, :ematl

def initialize(attributes = {})
@name = attributes[:name]
@email attributes[:email]
end

O 00O NN O WU & W IN -

def formatted ematil
"#{name} <#{email}>"
end
end

e
N P ©

user_spec.rb
describe User do
before(:each) do
@attr = { :name => "Example User", :email => "example@testing.com" }
end

1t "should create a new instance given valid attributes" do
eXpec ftf%f,jéwﬁfﬁffff: to D¢ 1d

A TEST METHOD

WRITING GOMMENTS

user.rb

1
2
5
4
5
b
7/
8
9

el e
> W N P

class User

attr_accessor :name, :ematl

AT < \ g - <r.
y 4 | 2 \ F 3 F
. y i e D |
: (. \
h .
2 8 e ¥ G —F e B

def 1n1t1a112e(attr1butes {})
GCHENE = attributes[:name]
@ematil = attributes[:email]
end

def formatted ematil
"#{name} <#{email}>"
end

end

MAKING COMMENTS

user.rb

1
2
3
4
)
b
7/
8
9

= R R e
5 W N FP

class User
attr_accessor :name, :ematl

def initialize(attributes = {})
CHENE = attributes[:name]
@ematil = attributes[:email]
end

def formatted ematil
"#{name} <#{email}>"
end
end

MAKING COMMENTS

LIMITATIONS

=|ncorrect code

=Unoptimized Code

=Smaller suggestion scope than ChatGPT
=EXpense

=Limited IDEs

=Limited Languages

=GitHub lock-in

“Ina recent evaluation, we found that
users accepted on average 26% of all
completions shown by GitHub Gopilot.

ETHIGAL AND LEGAL GONGERNS

LV NEED DATA TO
TRAINON

WHERE DO THEY GET TRAINING DATA

= CommonCrawl.org data

= WebText2

= “Books1” and “Books2” book data sets
= Wikipedia

=159 gigabytes of Python code from
54 million GitHub repositories

= You (and your input)

TRAINING DATA SOURGES ARE OPAQUE

\
S, stackoverflow o

Home Temporary policy: ChatGPT is banned

PUBLIC Asked 4 months ago Modified 8 days ago Viewed 791k times

TRAINING DATA BIAS

ITS/GITHUB COPILOT

LIABILITY

INTELLEGTURL PROPERTY
O e

In general: (1) training ML systems on public data is fair use (2) the output
belongs to the operator, just like with a compiler.

We expect that IP and Al will be an interesting policy discussion around
the world in the coming years, and we're eager to participate!

11:39 AM - Jun 29, 2021

20 Retweets 35 Quotes 56 Likes 11 Bookmarks

Free as in Freedom

BEST PRAGTIGES

= Review code for errors
= Understand how the code works
Be aware of legal and ethical concerns

= Disclose your usage
= Opt out of usage - it’s ok!

GONGLUSION

IT'S/GITHUB (;III'-IIII"I'

= ChatGPT Explained: A Normie's Guide To How It Works
Jon Stokes

= An example of LLM prompting for programming
Martin Fowler

= What is ChatGPT doing and what does it work?
Stephan Wolfram

https: [hit ly/railsconf-2023-ai-slides
@joshpuetz@mastodon.socia
@joshpuetz ”
joshpuetz.com
tonut.com

